F1TENTH Autonomous Racing (Due Date:)
Lab 2: Automatic Emergency Braking

Instructor: INSTRUCTOR Name: STUDENT NAME, StudentID: ID

This lab and all related course material on FITENTH Autonomous Racing has been de-
veloped by the Safe Autonomous Systems Lab at the University of Pennsylvania (Dr.
Rahul Mangharam). 1t is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License. You may download, use, and modify the material, but
must give attribution appropriately. Best practices can be found here.

Course Policy: Read all the instructions below carefully before you start working on the assign-
ment, and before you make a submission. All sources of material must be cited. The University
Academic Code of Conduct will be strictly enforced.

1 Learning outcomes
The following fundamentals should be understood by the students upon completion of this lab:

e Using the LaserScan message in ROS
e Time to Collision (TTC)

e Safety critical systems

2 Overview

The goal of this lab is to develop a safety node for the race cars that will stop the car from
collision when travelling at higher velocities. We will implement Time to Collision (TTC) using
the LaserScan message in the simulator.

2.1 The LaserScan Message

Recall from the previous lab that each LaserScan message contains several fields that will be useful
to us. Youll need to subscribe to the scan topic and calculate TTC with the LaserScan messages.

2.2 The Odometry Message

Both the simulator node and the car itself publish Odometry messages (ROS documentation linked
here: http://docs.ros.org/melodic/api/navmsgs/html/msg/0dometry.html). Within its sev-
eral fields, the message in- cludes the cars position, orientation, and velocity. Youll need to explore
this message type in this lab.


http://f1tenth.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.creativecommons.org/wiki/best_practices_for_attribution
http://docs.ros.org/melodic/api/nav msgs/html/msg/Odometry.html

STUDENT NAME — Lab 2: Automatic Emergency Braking 2

2.3 The AckermannDriveStamped Message

AckermannDriveStamped is the message type that well use throughout the course to send driving
commands to the simulator and the car. ROSs documentation is linked here: http://docs.
ros.org/api/ackermannmsgs/html/msg/AckermannDriveStamped.html Note that we wont be
sending driving commands to the car from this node, were only sending the brake commands. By
sending an AckermannDriveStamped message with the velocity set to 0.0, the simulator and the
car will interpret this as a brake command and hit the brakes.

2.4 The TTC Calculation

Time to Collision (TTC) is the time it would take for the car to collide with an obstacle if it
maintained its current heading and velocity. Between the car and its obstacle, we can calculate it
as:

r
=7+

where 7 is the distance between the two objects and 7 is the time derivative of that distance.
7 is computed by projecting the relative velocity of the car onto the distance vector between the
two objects. The operator [|; is defined as: [z], := max(z,0).

You'll need to calculate the TTC for each beam in the laser scan. Projecting the velocity of
the car onto each distance vector is very simple if you know the angle between the cars velocity
vector and the distance vector (which can be determined easily from information in the LaserScan
message).

TTC =

3 Automatic Emergency Braking with TTC

For this lab, you will make a Safety Node that should halt the car before it collides with obstacles.
To do this, you will make a ROS node that subscribes to the LaserScan and Odometry messages.
It should analyze the LaserScan data and, if necessary, publish an AckermannDriveStamped with
the velocity field set to 0.0 m/s, and a Bool message set to True (http://docs.ros.org/melodic/
api/stdmsgs/html/msg/Bool.html). The AckermannDriveStamped message will be received by
the Mux node and the Bool message will be received by the Behavior Controller, which will then
tell the Mux node to select the appropriate Drive message.

Note the following topic names for your publishers and subscribers (also detailed in the skeleton
code):

e LaserScan: /scan
e Odometry: /odom
e Bool message: /brake bool

e Brake message: /brake

You can implement this node in either C++ or Python, the skeleton code for both is found in
the f1tenth_labs/lab2 repository in the safety folder: https://github.com/fitenth/fltenth_
labs/tree/master/lab2.


http://docs.ros.org/api/ackermann msgs/html/msg/AckermannDriveStamped.html
http://docs.ros.org/api/ackermann msgs/html/msg/AckermannDriveStamped.html
http://docs.ros.org/melodic/api/std msgs/html/msg/Bool.html
http://docs.ros.org/melodic/api/std msgs/html/msg/Bool.html
https://github.com/f1tenth/f1tenth_labs/tree/master/lab2
https://github.com/f1tenth/f1tenth_labs/tree/master/lab2

STUDENT NAME — Lab 2: Automatic Emergency Braking 3

NOTE: Make sure to press B on your keyboard in the terminal window that launched the simula-
tor. This will activate the AEB and allow the Behavior Controller to switch the Mux to Emergency
Brake when the boolean is published as True. Pressing B again will toggle the AEB off.

4 Deliverables and Submission

Submit the following as studentname lab2.zip (replace studentname with your name):

1. Your package including the safety node, named as studentname safety. Make sure it
compiles before you submit after changing the package name.

2. Make a youtube video of teleop (manual driving) around the Levine loop (with your safety
node on) in the simulator without significant false positives. Add this link to a text file named

studentname_lab2_video.txt

5 Grading

We will test your code by accelerating the car down a straight towards a wall in the Levine map,
and your safety node should stop the car before collision.

5.1 Rubric

Topics

Compilation

Provided Video

Correctly stops before collision
Correctly calculates TTC

Able to navigate through the hallway
Total

Points
30

20

30

10

10

100



STUDENT NAME — Lab 2: Automatic Emergency Braking 4

6 FAQ

Q: How should the TTC threshold be determined?

A: We recommend trial and error on a variety of situations (e.g. driving down the hall vs straight
at a wall) to minimize false positives while preventing crashes. You can get a good initial estimate
using the cars deceleration (8.26 %5 ) and its velocity for keyboard driving (1.8 m )

Q: Should false be published on the brake bool topic when the AEB is not in effect?
A: Yes. Publishing false will make sure that no Drive messages on the brake topic are sent to the
Simulator, and will allow other controllers (e.g. keyboard) to take back control.

Q: If the AEB is not engaged, should a AckermannDriveStamped message be published on the
brake topic?

A: No, the brake topic is meant to only have messages that bring the car to a stop, so there is no
need to send anything in this case. Moreover, if the AEB is not engaged, messages on the brake
topic will not be sent to the Simulator.

Q: Does the order of messages published matter? That is, is there a difference between:
brake publisher.publish(brake msg) ;

brake bool _publisher.publish(brake bool msg) ;

and

brake_bool_publisher.publish(brake_bool msg) ;

brake_publisher.publish(brake msg) ;

A: No. Due to latency between sending and receiving messages, this realistically wont matter.

Q: How are the coordinate frames of the LaserScan and Odometry data oriented with respect
to the car?

A: The Odometry data is in the frame centered on the rear axle, seen below. The message gives
the magnitude and sign of the cars velocity. It is always directed in the +x direction (red axis).
The LaserScan data is in the LiDars frame, seen below towards the front of the car.

Q: When testing driving forwards and in reverse, the cars distance from the wall after braking
seems different between these two cases. Am I doing something wrong, or should I try and use
different TTC thresholds?

A: The ranges in the LaserScan message are from the LiDars frame (seen above) which is not in
the center of the car. An ideal AEB system would subtract the distance from the LiDar to the
edge of the car for each beam, and use that distance in the TTC calculation. A two-threshold
system could work too, but for this assignment, as long as it doesnt crash during keyboard teleop,



STUDENT NAME — Lab 2: Automatic Emergency Braking 5

a single threshold value is good enough. More sophisticated solutions are always welcome!

Q: After the car is stopped by the AEB, if I drive the car towards the wall again, it will be
stopped by the brake again. But if I repeat this, the car will move closer and closer to the wall
until a collision occurs before the AEB can stop the car. Is this be acceptable or should the AEB
prevent collisions in all circumstances?

A: A collision in this unique situation is fine. When the car is extremely close to the wall and
begins to move, it is impossible to stop it in time.



	Learning outcomes
	Overview
	The LaserScan Message
	The Odometry Message
	The AckermannDriveStamped Message
	The TTC Calculation

	Automatic Emergency Braking with TTC
	Deliverables and Submission
	Grading
	Rubric

	FAQ

