F1TENTH Autonomous Racing (Due Date:)

Lab 1: Introduction to ROS

Instructor: INSTRUCTOR Name: STUDENT NAME, StudentID: ID

This lab and all related course material on FITENTH Autonomous Racing has been de-
veloped by the Safe Autonomous Systems Lab at the University of Pennsylvania (Dr.
Rahul Mangharam). It is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License. You may download, use, and modify the material, but
must give attribution appropriately. Best practices can be found here.

Course Policy: Read all the instructions below carefully before you start working on the assign-
ment, and before you make a submission. All sources of material must be cited. The University
Academic Code of Conduct will be strictly enforced.

1 Learning outcomes

The following fundamentals should be understood by the students upon completion of this lab:

e Understanding the directory structure and framework of ROS

e Understanding how publishers and subscribers are implemented
e Understanding how custom messages are implemented

e Understanding CMakeLists.txt and package.xml files

e Understanding dependencies

e Working with launch files

e Working with RViz

e Working with Bag files

2 Overview

The goal of this lab assignment is to get you familiar with the various paradigms and uses of ROS
and how it can be used to build robust robotic systems. ROS is a meta-operating system which
simplifies inter-process communication between elements of a robot’s various sub-systems.

We highly recommend that you go through this tutorial in both Python and C++ to help
yourself to learn all aspects of ROS. The written questions are titled with their corresponding
languates. The questions titled with Python are for Python, C+4++ are for C++, and Python
& C++ for both Python and C++. If you choose to finish this lab in one language, answer the
questions for that language and the questions for both languages.

http://f1tenth.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.creativecommons.org/wiki/best_practices_for_attribution

STUDENT NAME — Lab 1: Introduction to ROS 2

3 Workspaces and Packages

Use the following two tutorials to setup a workspace and a test package.
Create a Workspace
Create a Package

Name your workspace as:

<student_name_ws>
And the Package as:

<student_name_roslab>

3.1 Written Questions

1. (Python & C++) What is a CMakeList? Is it related to a make file used for compiling
C++ objects? If yes then what is the difference between the two?

2. (Python & C++) Are you using CMakeList.txt for Python in ROS? Is there a executable
object being created for Python?

3. (Python & C++) In which directory would you run catkin make?

4. (Python & C++) The following commands were used in the tutorial

$ source /opt/ros/kinetic(melodic)/setup.bash
$ source devel/setup.bash

Why do we need to source setup.bash? What does it do? Why do we have to different
setup.bash files here and what is there difference?

4 Publishers and Subscribers

We will now implement a publisher and a subscriber. The corresponding tutorials are here:
Writing publishers and subscribers in C++ ROS
Writing publishers and subscribers in Python ROS

4.1 Subscribing to Data Using a Simple LIDAR Processing Node

We will subscribe to the data published by the synthetic LIDAR in the simulator. Run the following
commands in different terminals. First launch the simulator:

$ roslaunch f110_simulator simulator.launch
In a different terminal, list all the topics active right now
$ rostopic list

You will now see a complete list of topics being published by the simulator, one of which will
be /scan. Run the following commands to take a look at what’s being published on this topic:

$ rostopic echo /scan

http://wiki.ros.org/catkin/Tutorials/create_a_workspace
http://wiki.ros.org/ROS/Tutorials/CreatingPackage
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28c%2B%2B%29
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%29

STUDENT NAME — Lab 1: Introduction to ROS 3

This command prints out the data which is being published over the /scan topic in the terminal.
The /scan topic contains the measurements made by the 2D LIDAR scanner. The data contains
distance measurements at fixed angle increments.

Your task is to create a new node which subscribes to the /scan topic.

e In ROS, all data communicated on topics have to conform to a certain pre-defined message
type. For the subscriber you're implementing that listens to the /scan topic, you'll need to
designate the message type in your callback function. If you’re not sure, you can check the
message type of the messages being communicated on a topic (/scan in this case) by the
following command:

$ rostopic info /scan

e The message type of LIDAR scans is usually:
sensor_msgs: :LaserScan in C++ and sensor_msgs.LaserScan in Python.

You can also check the detail information on the message type (e.g. what are the fields in the
message structure and what are their primitive types) by using the following commands:

$ rosmsg show sensor_msgs/LaserScan

Go through the message type documentation of LaserScan to figure out what fields you’ll
need and what primitive types they are so that you can extract the data you're looking for.

You can go through ROS’s documentation on what ROS primitive data types correspond to
the languages’ primitive and data type.

Note: when working with LaserScan messages, always filter out NaNs and infs in the
data. You can use std::isinf and std::isnan in C++ and np.isinf and np.isnan in
Python(with NumPy).

Suggestion: If you are not familiar with using gdb (¢4+ debugger) or pdb(python debugger)
you can print out messages using:

ROS_INFO_STREAM ()

e Be sure to include the header file of the message file in your script. (more on what this header
file is in a later section of this lab)

4.2 Publishing to a New Topic Using a Simple Lidar Node

Now we will process the data we have received from the lidar and publish it over some topic.
Find out the maximum value in the lidar data (the farthest point which is the range in meters)
and the minimum value(the closest point which is the range in meters). Publish them over two
separate topics,

\closest_point
\farthest_point

Keep the data type (message typ) for both the topics as Float64.

http://docs.ros.org/melodic/api/sensor_msgs/html/msg/LaserScan.html
https://wiki.ros.org/msg

STUDENT NAME — Lab 1: Introduction to ROS 4

4.3 Written Questions

1. (C4++4)What is a nodehandle object? Can we have more than one nodehandle objects in a
single node?

(Python) Is there a nodehandle object in python? What is the significance of rospy.init_node ()
(C4++4)What is ros: :spinOnce()? How is it different from ros::Spin()?
(C++)What is ros: :rate(D?

BT B

(Python) How do you control callbacks in python for the subscribers? Do you need spin()
or spinonce() in python?

5 Implementing Custom Messages

Now we will implement a Custom message in the package you have developed above. The following
tutorial explains how to implement and use Custom messages.

Creating custom ROS message files (Pay attention to the cmake list and the XML file.
Also, make sure to include the header file of hte message file in your script,)

You need to implement a custom message which includes both maximum and minimum values
of the scan topic and publishes them over a topic:

Msg File name: scan_range.msg
Topic name : /scan_range

5.1 Written Questions

1. (C4++4)Why did you include the header file of the message file instead of the message file
itself?

2. (Python & C++4)In the documentation of the LaserScan message there was also a data
type called Header header. What is that? Can you also include it in your message file? What
information does it provide? Include Header in your message file too.

6 Recording and Publishing Bag Files

Here we will work with bagfiles. Follow this tutorial to record a a bag file using the given com-
mands.
Robsag Tutorial

6.1 Written Questions
1. (Python & C++)Where does the bag file get saved? How can you change where it is saved?

2. (Python & C++)Where will the bag file be saved if you were launching the recording of
bagfile record through a launch file. How can you change where it is saved?

http://wiki.ros.org/ROS/Tutorials/CreatingMsgAndSrv
http://wiki.ros.org/ROS/Tutorials/Recording%20and%20playing%20back%20data

STUDENT NAME — Lab 1: Introduction to ROS 5

7 Using Launch Files to Launch Multiple Nodes

Implement a launch file which starts the node you have developed above along with Rviz. If you
are not familiar with RViz or launch files, the Rviz tutorial of RosWiki will be helpful:
RViz Tutorial
Roslaunch Tutorial
Name your launchfile student name _labl.launch

Set the parameters of Rviz to display your lidar scan instead of manually doing it through the
Rviz GUIL. Change rviz configuration file. You will have to first change the configurations in the
Rviz GUI, save them and then launch them using the launch file.

Here are a couple of good answers on ROS wiki for saving and launching Rviz Configruation
files:
Launching Rviz Config file
Saving Rviz config file

8 Good Programming Practices

This class is heavily implementation oriented and it is our hope that this class will help you reach
a better level of programming robotic systems which are robust and safety critical.

1. Python and C++

e The skeletons will be in the format of class objects. Keep them as that. If you need to
implement a new functionality which can be kept separate put it in a separate function
definition inside the skeleton class or inside a different class whose object you can call in
the skeleton class.

e Keep things private as much as you can. Global variables are strongly discouraged.
Additionally, public class variables are also to be used only when absolutely necessary.
Most of the labs you can keep everything private apart from initialization function.

e Use debuggers. It will take a day to set up but will help you in the entire class. The
debuggers are mentioned in the sections below.
2. Python
e ROS uses Python2 and not Python3. Make sure that your system-wide default python
is python2 and not python3.
e Use PDB. Easy to use and amazing to work with. PDB Tutorial

e Use spaces instead of tab. Spaces are universally the same in all machines and text
editors. If you are used to using Tabs, then take care that you are consistent in the entire
script.

e Vectorize your code. Numpy is extremely helpful and easy to use for vectorizing loops.
Nested for loops will slow down your code, try to avoid them.

e This is a good reference for Python-ROS coding style: Python-ROS style guide
3. C++

http://wiki.ros.org/rviz/Tutorials
http://wiki.ros.org/roslaunch
https://answers.ros.org/question/287670/run-rviz-with-configuration-file-from-launch-file/
https://answers.ros.org/question/11845/rviz-configuration-file-format/
https://realpython.com/python-debugging-pdb/
http://wiki.ros.org/PyStyleGuide

STUDENT NAME — Lab 1: Introduction to ROS 6

e Use GDB and/or Valgrind. You will have to define the dependencies in your cmake lists
and some flags. GDB is good for segmentation faults and Valgrind is good for Memory
leaks. Debugging with ROS Tutorial

e C++ 11 has functionalities which are helpful in writing better code.You should be looking
at things like uniform initialization, auto key word and iterating with auto in loops.

e Use maps and un-ordered maps whenever you need key value pair implementations. Use
sets when you want to make sure that there are unique values in the series. Vectors are
good too when you just want good old arrays. All the aforementioned containers are
good for searching as they don’t require going through the entire data to search. Linked
lists will not be helpful too much in most cases. Exceptions maybe there.

e This is a good reference for C++ - ROS coding style: C++ -ROS style guide

9 Deliverables and Submission

Note: You are not supposed to use any separate packages or dependencies for this
lab. Submit the following as studentname labl.zip (replace studentname with your name):

1. Pdf with written answers. Use the labl_solutions_template.tex template in the latex
folder.

2. A ROS Package by the name of student name labl
3. the ROS Package should have the following files

(a) lidar_processing.cpp OR lidar _processing.py

(b) scan_range.msg

)
(c) student name roslab.launch
(d) Any other helper function files that you use.
)

(e) A README with any other dependencies your submission requires (you should not need

any).

10 Grading

10.1 Rubric
Topics Points
Compilation 15
Written answers 15
Bag file Pprovided)
Publisher subscriber implemented 20
custom messages implemented 20
Launch file and rviz configuration 20
Programming practices)

Total 100

http://wiki.ros.org/roslaunch/Tutorials/Roslaunch%20Nodes%20in%20Valgrind%20or%20GDB
http://wiki.ros.org/CppStyleGuide

	Learning outcomes
	Overview
	Workspaces and Packages
	Written Questions

	Publishers and Subscribers
	Subscribing to Data Using a Simple Lidar Processing Node
	Publishing to a New Topic Using a Simple Lidar Node
	Written Questions

	 Implementing Custom Messages
	Written Questions

	Recording and Publishing Bag Files
	Written Questions

	Using Launch Files to Launch Multiple Nodes
	Good Programming Practices
	Deliverables and Submission
	Grading
	Rubric

