
CAD2CAV: Computer Aided Design for
Cooperative Autonomous Vehicles

Zhihao Ruan

Abstract—Autonomous robots have been put into use
to explore unknown environments. With the development
of a 1/10 scale race car, we have considered an appli-
cation of using multiple F1/10 race cars to explore an
unknown environment collaboratively while exploiting the
prior knowledge of this environment, i.e., the floor plan of
the target building. We have proposed a complete pipeline
from the building floor plan to 3D rendering of the building
model and a planning stack that is capable of distribute
the exploration task evenly to multiple vehicles.

I. INTRODUCTION

In recent years, great improvements have taken place
in terms of the technologies of autonomous vehicles
and they have been put into use in various aspects.
In particular, O’Kelly et al. [1], [2] have proposed an
open-source simulation framework targeting autonomous
racing cars at the 1/10 scale. In such context, this
project considers a potential use for the F1/10 racing cars
— to collaboratively explore an unknown environment
efficiently given some prior knowledge, i.e., exploring
a building given its floor plans. More specifically, our
challenge is to develop algorithms for the following
steps: 1) set up a basic render of the 3D model of
the building given its floor plan, 2) identify and extract
some abstract waypoints from the floor plan, 3) split
the waypoints evenly to all F1/10 racing cars so that
each of them is able to explore a certain area of the
building parallelly with minimum overlap and minimum
total time, 4) navigate the car to explore the waypoints
in real world, 5) use LiDAR to perceive the detailed
information of the building and add these additional
information to the rendering software.

We have come up with solutions to multiple steps
in the task. For the rendering software of the building,
we first use Autodesk Revit to redraw the floor plan
using built-in architectural components, i.e., walls, doors,
windows, etc. Then we construct the 3D model of the
building in Unreal Engine 4 (UE4) through a plugin
called Unreal Datasmith, which can import the Autodesk
Revit model into UE4 software; for the splitting of the
waypoints for multiple F1/10 racing cars, we construct
a graph connecting all the waypoints, apply multilevel
k-way graph partitioning algorithms [3] to generate
even-weight subgraphs, and then form a closed TSP
(Travelling Salesman Problem) loop from each subgraph
for each racing car; for the navigation of the racing
cars, we use FMT* [4] to generate obstacle-avoiding
paths for the racing cars to explore the waypoints, and
use pure-pursuit [5] to control the racing cars; for the

perception of the detailed information, we wish to make
use of Google Cartographer [6] to perform SLAM in
the environment and pass pre-processed point cloud
information to the rendering software to update the
model of the building.

II. METHODS

A. The Rendering Software

The first step of this project is to set up a software
that renders the basic model of the building from its floor
plans. We approached this by making use of the existing
model rendering plugin Unreal Datasmith1. Namely,
given the building’s floor plan in AutoCAD format, we
first import it to Autodesk Revit and redraw the floor
plan using built-in architectural components, so that the
floor plan has its own 3D view in Autodesk Revit. Figure
(1) demonstrates the result of redrawing the floor plan
in Revit. Next, we export the model through Unreal
Datasmith Revit Plugin, and import it to Unreal Engine2,
which leads to Figure (2). Finally, as for obtaining the
waypoints from the building floor plan, we decided to
achieve this interactively. We wrote a event callback
function in UE4, such that when users right-click on the
screen during gameplay, the game would automatically
perform ray-tracing from the screen pixel location, and
saves the location of the first-hit objects in the UE4
world. In addition, we also saved more information about
the hit object (i.e., its name, category, etc.) so that we
could put into future use.

Fig. 1. The redrawn floor plan in Autodesk Revit

1https://www.unrealengine.com/en-US/datasmith/plugins
2https://docs.unrealengine.com/en-US/WorkingWithContent/

Importing/Datasmith/SoftwareInteropGuides/Revit/index.html

https://www.unrealengine.com/en-US/datasmith/plugins
https://docs.unrealengine.com/en-US/WorkingWithContent/Importing/Datasmith/SoftwareInteropGuides/Revit/index.html
https://docs.unrealengine.com/en-US/WorkingWithContent/Importing/Datasmith/SoftwareInteropGuides/Revit/index.html


Fig. 2. The rendered floor plan in Unreal Engine 4.

B. Graph Planner and Waypoint Splitting

The planning stack of the project is built on the ROS
framework. Given the waypoint locations in the floor
plan in map space and k vehicles, the graph planner is
designed to split waypoints into k groups and generate
a path for each group such that the path visits each
waypoint only once.

1) Clustering: An initial idea of the solution is to
apply clustering algorithms directly in the map space,
using the plain 2-D coordinates of the waypoints. How-
ever, as there are a large number of obstacles in the
floor plan map and it is very likely that waypoints that
seems together are actually very far away due to some
existing wall in between, it is impractical to cluster them
regardless of the locations of the walls. Therefore, it is
important to construct a fully connected graph out of the
waypoints so that we could apply penalties on the edges
between two waypoints if there is an obstacle. By such
means we would be able to depict the spatial relationship
of the waypoints more accurately.

Spectral clustering [7] is good at clustering nodes
in a graph based on the the edge weights. It first
transforms the graph into graph Laplacian space using
graph Laplacian transformation, and then apply another
direct clustering algorithms in the Laplacian space. In
our implementation, we constructed a complete graph
from the input of waypoints, implemented the graph
Laplacian transform on the graph, and then used k-
means++ algorithm [8] as the direct clustering tool in
the Laplacian space. As spectral clustering is based on
the similarity of the nodes, we transformed the edge
weights (which is initially distance-based) into similarity
measures using Gaussian similarity metric. The result on
the floor plan is shown in Figure (3).

After grouping the waypoints together, we still need
to compute a close loop as the path for each group
such that each path visits all points within its group
exactly only once. This can be formulated as a Traveling
Salesman Problem (TSP) and there have already existed
a number of solvers to this problem. Therefore, given the
clustering results, we first trim the edges in the original
graph that connects points in different groups in order

to generate k subgraphs. Next, we run a TSP solver3

which is heavily inspired by [9] in each subgraph and
get k TSP paths for our vehicles.

The downside of applying clustering algorithms to
split the waypoints is that the equal-length constraint
cannot be enforced in the generated paths, as there would
be different number of waypoints in each clustered
group. Figure (3) indicates such limitations, showing that
there are fewer points in group 1 than group 2.

2) Capacitated Vehicle Routing Problem: We can
also solve the problem by formulating it into a Capaci-
tated Vehicle Routing Problem (CVRP). General VRP
assumes that all vehicles start from the same place,
and aims at computing equal-length paths in a graph
such that all paths cover the entire set of graph nodes.
As TSP solutions would be a trivial solution to an
unconstrained VRP problem, we need to formulate a
constrained VRP where each vehicle should only be able
to visit a maximum number of nodes, which is also
known as a CVRP. Ant Colony Optimization can be
used to fast generate a reasonable approximation to the
CVRP [10]. In our implementation, we applied the Ant
Colony Optimization algorithm on the waypoint splitting
problem and generated results on the floor plan as Figure
(4) shows.

The limitation of applying CVRP solver to the way-
point splitting problem is that all vehicles are required to
start from the same place. However, as our graph planner
is very likely to re-plan as the F1/10 racing cars detect
more obstacles using LiDAR, it is difficult for all cars
to gather together once they are on the way to their own
designated region.

3) Graph Partitioning: We can also formulate the
problem into a graph partitioning problem. A graph
partitioning problem aims at directly dividing the graph
into k subgraphs such that the graph cut is minimized.
We can run the TSP solver in the subgraphs as pre-
viously indicated to solve for TSP loops. This fits
into our problem setting since if we manage to divide
the original graph into k even components, then the
TSP paths from subgraphs would also be more even.
In our implementation, we applied multilevel k-way
graph partitioning algorithm [3]. In order to produce
the minimum overlapping subgraphs, we transformed the
original edge weights into Gaussian similarity. By such
means the algorithm is able to maximize the edge cut
of our waypoint graph. Our implementation produced
the generated TSP paths for each subgraph as shown in
Figure (5).

Notice that of all the three methods, graph partition-
ing appears to have the best performance and the most
flexibility. As a result, we decided to incorporate the
graph partitioning algorithm into our graph planner.

3Please check Google OR-Tools for more information.



Fig. 3. Closed loop path for 2 vehicles using spectral clustering. Left: TSP path for Vehicle 1; right: TSP path for Vehicle 2.

Fig. 4. Closed loop path for 2 vehicles by solving CVRP. Left: CVRP path for Vehicle 1; right: CVRP path for Vehicle 2.

Fig. 5. Closed loop path for 2 vehicles by solving graph partitioning problem. Left: TSP path for Vehicle 1; right: TSP path for Vehicle 2.

C. Local Planner and Controller

Given the generated waypoint paths for k racing cars,
we would like to develop a low-level planner and a
controller to navigate and drive the cars in parallel. As
the cars would be exploring an unknown environment,
more obstacles are expected to be seen and our planner
must be capable of dynamically avoid obstacles. In
order to achieve this, we decided to apply FMT* [4]
which is a sampling-based planning algorithm. In our
implementation, we turned the local planner into a ROS
action server, and queried the planning service in real

time. We also keep tracking of the current position of
each race car and update the goal point as the next
waypoint in the local planner once the current goal is
reached.

We used the “Pure Pursuit” algorithm [5] to design
our controller for the race car. Specifically, given the
next trajectory generated from our FMT* local planner,
we interpolate an arc between the goal and our current
position. Then, we set the steering angle of the vehicle
proportional to the curvature of the arc. The desired
speed of the vehicle is constant.



The implementation of the local planner and the
controller relies heavily on the base code of this project,
which was finished last year by Yash Trikannad and
Saumya-Shah. The simulation of the race car navigation
is performed on the F1TENTH Simulator4 [1].

D. Perception and Mapping

In order to perceive the environment, we would like
to incorporate Google Cartographer [6] into our system.
This module is still under heavy development and more
plans can be found in Section IV.

III. IMPLEMENTATION DETAILS

The entire project is built in the ROS Noetic frame-
work with C++ 17 on Ubuntu 20.04 LTS. In order
for the code to compile, one may need the following
dependencies:

• Boost 1.71
• LibConfig++ 1.5.0
• OpenCV 4.5.0
• Google OR-Tools 8.2
• OSQP 0.6.2
• OSQP-Eigen 0.6.3
• METIS 5.1.0

The UE4 rendering software is built with Unreal
Engine 4.23.1 on Ubuntu 20.04 LTS.

A. Event Callback in UE4 Rendering

The waypoint saving module in the UE4 render-
ing software is designed to be an event callback loop
subscribing to the mouse right-click activity. This was
achieved through an Unreal Blueprint Design. The de-
tailed Unreal Blueprint logic flow is indicated in Figure
(6). As UE4 does not have a built-in Blueprint module
for waypoing saving, a customized module is also im-
plemented in C++.

Fig. 6. Unreal Blueprint design for waypoint saving.

4https://f1tenth.readthedocs.io/en/stable/going forward/simulator/
index.html#

B. Spectral Clustering

Spectral clustering starts with the construction of
the graph adjacency matrix. Given the waypoint graph,
we first transformed the edge weights from waypoint
distance to similarity measures using Gaussian similarity
measure:

si = exp

(
− e2i
2σ2

)
(1)

where σ is some parameter. In order to get a reasonable
similarity value for each waypoint graph edge we set
σ = 0.5 × max {e1, e2, . . . , em}. Such measures es-
sentially states that closer waypoints are considered as
more “similar”, which fits in our task of grouping closer
waypoints together.

After constructing the adjacency matrix of the graph
with Gaussian similarity, we then computed the graph
Laplacian in Eigen C++. Graph Laplacian can be com-
puted as

L = D −W = diag



∑m

j=1W1j

...∑m
j=1Wmj


−W (2)

where D is the degree matrix and W is the adjacency
matrix. For grouping the graph nodes into k clusters,
we then extracted the first k-smallest eigenvectors of
the Laplacian matrix. Each row in the resulting matrix
containing the k column vectors represents a feature
point of the corresponding graph node (indexed from
1 to N ) in the graph Laplacian space Rk.

Our final task is to run a low-level clustering al-
gorithm over the feature points in Rk. The algorithm
we chose was k-means++, which is an updated version
of the original k-means algorithm with advanced cluster
center initialization. A description of k-means++ algo-
rithm is listed in Algorithm 1.

Algorithm 1: k-means++ Algorithm
Input : Data points x1, x2, . . . , xn
Output: Clustering centroids c1, c2, . . . , ck
while number of initialized centroids is less than
k do

Pick the farthest data point to the current
centroids as a new centroid;

Re-assign each data point to the closest
centroid;

end
while Cluster assignment does not converge do

Re-assign each data point to the closest
centroid;

Re-compute each centroid location as the
mean of all current assigned data points;

end

https://f1tenth.readthedocs.io/en/stable/going_forward/simulator/index.html#
https://f1tenth.readthedocs.io/en/stable/going_forward/simulator/index.html#


C. Ant Colony Optimization for CVRP

We applied Ant Colony Optimization to solve the
CVRP problem. Ant Colony Optimization is essentially
an algorithm that mimics the behaviors of a group of ants
when they are hunting for food. At first, each ant would
randomly pick a direction to explore. They would leave
some special kind of pheromones as they are walking.
As long as an ant finds some food, it would notify other
ants so that more and more ants would explore following
its trail. Eventually the ants would find a path that leads
them to the food.

Stodola et al. [10] proposes to use Ant Colony
Optimization to solve the Capacitated Vehicle Routing
Problem (CVRP). Our implementation of Ant Colony
Optimization is based on the project base code and it
can be summarized in Algorithm 2.

Algorithm 2: Ant Colony Optimization

for a number of iterations do
for each ant in the colony do

Set all nodes to unvisited;
while number of unvisited nodes > 0 do

compute ant’s probability of going to
next nodes;

choose an unvisited node for the ant
to go next;

if ant’s cost + distance to next node
> ant’s capacity then

return to the starting point;
end
else

visit the next node;
end

end
return to the starting point;

end
save the solution with minimum cost;
evaporate pheromone trails;
update pheromone trails;

end

The pheromone trail is a matrix that records the
performance of all ant’s paths in each iteration, and
its update involves increasing the “pheromone” along
the best solution of that iteration (strengthen the best
solution and increase probability for ants to explore in
the next iteration) and decreasing the “pheromone” in
other possible paths (pheromone evaporation).

Last but not least, given the best CVRP solution
found in Ant Colony Optimization, we also ran a 2-Opt
local search [11] to further improve the results.

D. Graph Partitioning

We applied the multilevel k-way graph partitioning
algorithm [3] to solve the graph partitioning problem.
The algorithm involves coarsening the graph node, form
simple graphs, apply a simple graph bisection heuristic
(such as Kernighan-Lin heuristic [12]) on the coarse
graph, and then uncoarsen the graph to produce results.
As Karypis et al. [3] also provides a nice software5

encapsulating their graph partitioning ideas, we did not
implement the algorithm from scratch. Instead, we man-
aged to make use of the software directly for our project.

IV. FUTURE WORK

Our current system solves the problem of generating
3D model as well as waypoints from the floor plan of
the building. It also addresses the solution of splitting
the waypoints for k vehicles such that all vehicles can
explore the building collaboratively and parallelly with
equal effort and minimum overlap. However, it is still not
able to perceive the environment in detail and update the
3D rendering scene in UE4. Some thoughts on the future
plans of this project includes:

• Build a SLAM map of the environment using
Google Cartographer;

• Use the SLAM map to update the position of
obstacles in the graph planner, and possibly update
the waypoint graphs and re-split the unvisited way-
points with graph partition;

• Perform point cloud smoothing and object detection
on the LiDAR data, associate the LiDAR detection
results with the objects in the 3D rendering scene.
Identify doors, windows, walls, etc;

• Pass the point cloud data to UE4 gameplay, and
update the 3D model with additional detailed infor-
mation.

V. CONCLUSION

We have finished the 3D model setup and col-
laborative waypoint planning of this project. We have
developed a complete pipeline from the floor plan of
the building to rendering and multi-vehicle navigation
in the floor plan. In particular, we used UE4 to render
the model and generate the waypoints, and applied 3
different methods (spectral clustering, CVRP solving,
graph partitioning) to the collaborative planning module
of the project. Among the three proposed methods, graph
partitioning was considered as the most promising results
and it has been integrated to our planning stack. We
applied a novel sampling-based algorithm to achieve the
goal of obstacle avoidance in navigation and control of
the race car. Future work of this project would be more
focused on the perception module, which involves the
use of Google Cartographer.

5See METIS: http://glaros.dtc.umn.edu/gkhome/metis/metis/
overview

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview


REFERENCES

[1] M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam, “F1tenth:
An open-source evaluation environment for continuous control
and reinforcement learning,” in Proceedings of the NeurIPS
2019 Competition and Demonstration Track, ser. Proceedings of
Machine Learning Research, H. J. Escalante and R. Hadsell,
Eds., vol. 123. PMLR, 08–14 Dec 2020, pp. 77–89. [Online].
Available: http://proceedings.mlr.press/v123/o-kelly20a.html

[2] A. Agnihotri, M. O’Kelly, H. Abbas, and R. Mangharam, “Teach-
ing autonomous systems at 1/10th-scale: A project-based course
and community,” in ACM Special Interest Group on Computer
Science Education (SIGCSE). ACM, 2020.

[3] G. Karypis and V. Kumar, “Multilevel k-way partitioning
scheme for irregular graphs,” Journal of Parallel and
Distributed Computing, vol. 48, no. 1, pp. 96–129,
1998. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0743731597914040

[4] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast march-
ing tree: a fast marching sampling-based method for optimal
motion planning in many dimensions,” 2015.

[5] R. C. Coulter, “Implementation of the pure pursuit path tracking
algorithm,” Carnegie Mellon University, Pittsburgh, PA, Tech.
Rep. CMU-RI-TR-92-01, January 1992.

[6] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop
closure in 2d lidar slam,” in 2016 IEEE International Conference
on Robotics and Automation (ICRA), 2016, pp. 1271–1278.

[7] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering:
Analysis and an algorithm,” in Proceedings of the 14th Inter-
national Conference on Neural Information Processing Systems:
Natural and Synthetic, ser. NIPS’01. Cambridge, MA, USA:
MIT Press, 2001, p. 849–856.

[8] D. Arthur and S. Vassilvitskii, “K-means++: The advantages
of careful seeding,” in Proceedings of the Eighteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, ser. SODA ’07.
USA: Society for Industrial and Applied Mathematics, 2007, p.
1027–1035.

[9] P. Shaw, V. Furnon, and B. Backer, A Constraint Programming
Toolkit for Local Search, 04 2006, vol. 18, pp. 219–261.

[10] P. Stodola, J. Mazal, M. Podhorec, and O. Litvaj, “Using the ant
colony optimization algorithm for the capacitated vehicle routing
problem,” in Proceedings of the 16th International Conference on
Mechatronics - Mechatronika 2014, 2014, pp. 503–510.

[11] G. A. Croes, “A method for solving traveling-salesman
problems,” Operations Research, vol. 6, no. 6, pp. 791–812,
1958. [Online]. Available: https://doi.org/10.1287/opre.6.6.791

[12] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” The Bell System Technical Journal, vol. 49,
no. 2, pp. 291–307, 1970.

http://proceedings.mlr.press/v123/o-kelly20a.html
https://www.sciencedirect.com/science/article/pii/S0743731597914040
https://www.sciencedirect.com/science/article/pii/S0743731597914040
https://doi.org/10.1287/opre.6.6.791

	Introduction
	Methods
	The Rendering Software
	Graph Planner and Waypoint Splitting
	Clustering
	Capacitated Vehicle Routing Problem
	Graph Partitioning

	Local Planner and Controller
	Perception and Mapping

	Implementation Details
	Event Callback in UE4 Rendering
	Spectral Clustering
	Ant Colony Optimization for CVRP
	Graph Partitioning

	Future Work
	Conclusion
	References

